牙齿烂了一个洞很痛怎么办?
1992023-2-23
首先是准备工作,导入需要使用的库,读取并创建数据表取名为loandata。
?
1
2
3
import numpy as np
import pandas as pd
loandata=pd.DataFrame(pd.read_excel('loan_data.xlsx'))
设置索引字段
在开始提取数据前,先将member_id列设置为索引字段。然后开始提取数据。
?
1
Loandata = loandata.set_index('member_id')
按行提取信息
第一步是按行提取数据,例如提取某个用户的信息。下面使用ix函数对member_id为1303503的用户信息进行了提取。
?
1
loandata.ix[1303503]
按列提取信息
第二步是按列提取数据,例如提取用户工作年限列的所有信息,下面是具体的代码和提取结果,显示了所有用户的工作年龄信息。
?
1
loandata.ix[:,'emp_length']
按行与列提取信息
第三步是按行和列提取信息,把前面两部的查询条件放在一起,查询特定用户的特定信息,下面是查询member_id为1303503的用户的emp_length信息。
?
1
loandata.ix[1303503,'emp_length']
在前面的基础上继续增加条件,增加一行同时查询两个特定用户的xx金额信息。具体代码和查询结果如下。结果中分别列出了两个用户的代码金额。
?
1
loandata.ix[[1303503,1298717],'loan_amnt']
在前面的代码后增加sum函数,对结果进行求和,同样是查询两个特定用户的xx进行,下面的结果中直接给出了xx金额的汇总值。
?
1
loandata.ix[[1303503,1298717],'loan_amnt'].sum()
除了增加行的查询条件以外,还可以增加列的查询条件,下面的代码中查询了一个特定用户的xx金额和年收入情况,结果中分别显示了这两个字段的结果。
?
1
loandata.ix[1303503,['loan_amnt','annual_inc']]
多个列的查询也可以进行求和计算,在前面的代码后增加sum函数,对这个用户的xx金额和年收入两个字段求和,并显示出结果。
?
1
loandata.ix[1303503,['loan_amnt','annual_inc']].sum()
AJAX(Asynchronouse JavaScript And XML:异步JavaScript和XML)通过在后台与服务器进行少量数据交换,Ajax 可以使网页实现异步更新,这意味着可以在不重新加载整个网页的情况下,对网页的某部分进行局部更新。传统的网页(不使用Ajax)如果需要更新内容,必须重载整个网页页面。
因为传统的网页在传输数据格式方面,使用的是 XML 语法,因此叫做 AJAX ,其实现在数据交互基本上都是使用 JSON 。使用AJAX加载的数据,即使使用了JS将数据渲染到了浏览器中,在 右键-查看网页源代码 还是不能看到通过ajax加载的数据,只能看到使用这个url加载的html代码。
法1:直接分析ajax调用的接口。然后通过代码请求这个接口。
法2:使用Selenium+chromedriver模拟浏览器行为获取数据。
Selenium 相当于是一个机器人。可以模拟人类在浏览器上的一些行为,自动处理浏览器上的一些行为,比如点击,填充数据,删除cookie等。 chromedriver 是一个驱动 Chrome 浏览器的驱动程序,使用他才可以驱动浏览器。当然针对不同的浏览器有不同的driver。以下列出了不同浏览器及其对应的driver:
现在以一个简单的获取百度首页的例子来讲下 Selenium 和 chromedriver 如何快速入门:
参考:Selenium的使用
直接直接分析ajax调用的接口爬取
selenium结合lxml爬取
爬虫流程
其实把网络爬虫抽象开来看,它无外乎包含如下几个步骤
模拟请求网页。模拟浏览器,打开目标网站。
获取数据。打开网站之后,就可以自动化的获取我们所需要的网站数据。
保存数据。拿到数据之后,需要持久化到本地文件或者数据库等存储设备中。
那么我们该如何使用 Python 来编写自己的爬虫程序呢,在这里我要重点介绍一个 Python 库:Requests。
Requests 使用
Requests 库是 Python 中发起 HTTP 请求的库,使用非常方便简单。
模拟发送 HTTP 请求
发送 GET 请求
当我们用浏览器打开豆瓣首页时,其实发送的最原始的请求就是 GET 请求
import requests
res = requests.get('')
print(res)
print(type(res))
Response [200]
class 'requests.models.Response'
根据你要抓取页面的源码字段来进行爬取。根据对应的源码找到你的需求数据,主要用到requests+BeautifulSoup,其中requests用于请求页面,BeautifulSoup用于解析页面。
当用python爬取大量网页获取想要的数据时,最重要的问题是爬虫中断问题,python这种脚本语言,一中断
进程就会退出,怎么在中断后继续上次爬取的任务就至关重要了。这里就重点剖析这个中断问题。
第一个问题: 简单点的用动态代理池就能解决,在爬取大量数据的时候,为了速度不受影响,建议使用一些缓
存的中间件将有效的代理 ip 缓存起来,并定时更新。这里推荐 github 这个仓库
, 它会做ip有效性验证并将 ip 放入 redis ,不过实现过于复杂
了,还用到了 db ,个人觉得最好自己修改一下。困难点的就是它会使用别的请求来进行判断当前的ip是否
是爬虫,当我们过于聚焦我们的爬虫请求而忽略了其他的请求时,可能就会被服务器判定为爬虫,进而这个ip
会被列入黑名单,而且你换了ip一样也会卡死在这里。这种方式呢,简单点就用 selenium + chrome 一个一个
去爬,不过速度太慢了。还是自己去分析吧,也不会过复杂的。
第二个问题: 网络连接超时是大概率会遇到的问题,有可能是在爬取的时候本地网络波动,也有可能是爬
取的服务端对ip做了限制,在爬取到了一定量级的时候做一些延迟的操作,使得一些通用的 http 库超时
( urllib )。不过如果是服务端动的手脚一般延迟不会太高,我们只需要人为的设置一个高一点的
timeout 即可(30 秒),最好在爬取开始的时候就对我们要用的爬取库进行一层封装,通用起来才好改
动。
第三个问题: 在解析大量静态页面的时候,有些静态页面的解析规则不一样,所以我们就必须得做好断点
续爬的准备了( PS : 如果简单的忽略错误可能会导致大量数据的丢失,这就不明智了)。那么在调试的过
程中断点续爬有个解决方案,就是生产者和消费者分离,生产者就是产生待爬 url 的爬虫,消费者就是爬取
最终数据的爬虫。最终解析数据就是消费者爬虫了。他们通过消息中间件连接,生产者往消息中间件发送待
爬取的目标信息,消费者从里面取就行了,还间接的实现了个分布式爬取功能。由于现在的消费中间件都有
ack 机制,一个消费者爬取链接失败会导致消息消费失败,进而分配给其他消费者消费。所以消息丢失的
概率极低。不过这里还有个 tips , 消费者的消费超时时间不能太长,会导致消息释放不及时。还有要开启
消息中间价的数据持久化功能,不然消息产生过多而消费不及时会撑爆机器内存。那样就得不偿失了。
第四个问题: 这种情况只能 try except catch 住了,不好解决,如果单独分析的话会耗费点时间。但在
大部分数据 (99%) 都正常的情况下就这条不正常抛弃就行了。主要有了第三个问题的解决方案再出现这
种偶尔中断的问就方便多了。
希望能帮到各位。
import requests
from bs4 import BeautifulSoup
import re
import json
# 1.发送请求,获取疫情首页(数据来源于丁香园)
response = requests.get('')
home_page = response.content.decode()
# 2.从疫情首页提取最近一日数据
soup = BeautifulSoup(home_page, 'lxml')
script = soup.find(id='getAreaStat')
text = script.string
# 3.提取数据获取json格式数据
json_str = re.findall(r'\[.+\]', text)[0]
# 4.把json格式转换为python类型
last_day_corona_virus = json.loads(json_str)
# 5.以json格式保存最近一日数据
with open('data/last_day_coronavirus.json', 'w') as fp:
json.dump(last_day_corona_virus, fp, ensure_ascii=False)
关于python如何抓取数据和Python抓取数据的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。