废机油怎么处理?
2062023-4-19
最根本的办法是增加其入口压力!即提高其气蚀裕量。
工程上常用办法:
1、降低水泵安装高度(提高其入口井安装高度)
2、为水泵安装前置泵;
3、为水泵加装诱导轮;
4、在入口压力不足的情况下,降低其出口流量;
5、加装再循环系统。
6、改善流道,采用抗汽蚀性能更好的叶轮。
气蚀:流动着的流体由于局部压力的降低产生汽泡的现象。泵发生汽蚀,在汽蚀部位会引起机件的侵蚀,进一步发展则将造成扬程下降,产生振动噪声。解决方案:1、增加泵的进口压力,或者在主泵前面添加喂油泵。2、减小泵出口压力,关小泵的出口,从而让液体满流,从而实现消除气蚀的作用。3、泵运行前进行排空。排空不仅排掉泵中的气体还有管道中的气体。4、降低液体的温度。
答:离心油泵的吸入动力是靠吸入液面上压力与叶轮甩出液体后形成的低压差。叶轮入口处压力越来越低,则吸入能力越大,但若低于饱和蒸汽压则出现汽泡,原来溶于液体中的气体也逸出,这些小汽泡随气流流到叶轮内高压区时,在周围液体较高压力作用下,便会重新凝结,体积缩小,好似形成一个空穴,这时周围液体又以极高速度向空穴冲来,产生很高的局部压力,连续击打叶轮表面,这种高速、高压的水力冲击,叶片表面便因疲劳而剥蚀呈现麻点,蜂窝海绵状。
这种汽化一凝结一冲击一剥蚀现象,就称为汽蚀现象。
防止CYZ自吸式离心油泵
汽蚀可以采用的方法:
(1)提高离心泵本身抗汽蚀性能的措施:这些措施主要是靠设计与制造单位来实现的,例如可以改变叶轮的进口几何形状,采用双吸式叶轮,也可以采用较低的叶轮入口速度,加大叶轮入口直径。
(2)适当增大叶片入口边宽度,也可以使叶轮入口相对速度减少。
(3)采用抗汽蚀材料制造叶轮。
(4)提高装置有限汽蚀余量,如增大吸入罐液面上的压力,合理确定几何安装高度,都可以提高泵的有效汽蚀余量。
(5)减少吸入管路阻力损失,降低液面的汽化压力,都可以提高有效汽蚀余量。
具体解决方案如下:
1、表面处理:对需处理的工件进行补焊、脱脂处理、喷砂除锈。
①补焊:对过量冲蚀,不足以支撑胶粘剂强度的部位需要进行补焊。
②脱脂、除潮处理:去除工件表面的油脂,以棉纱擦拭工件表面,棉纱无油渍、水渍。用氧气乙炔将火焰调整到10CM长,以5cm/min的速度,使火焰反复均匀烘烤工件表面,去除工件表面的油脂和潮气。
③喷砂除锈:去除工件表面的氧化层,目视检查,喷砂面可见均匀的金属本色。喷砂处理完的工件不允许用带油脂手套直接接触喷砂面,喷砂处理后工件要注意防潮。
2、制作:模具、工具准备,将工件预热,胶粘剂预热,严格按照胶粘剂配比进行混合搅拌,搅拌完成后的胶粘剂盛在料盘中对预热完成的工件进行施胶,混合后的胶粘剂在料盘中停留时间不能超过3分钟,以保证胶粘剂对工件的充分粘合。施工完成后,对检查出的缺陷进行及时修补。
3、固化:在常温30°下24小时自然固化,不同条件可延长固化时间。
4、研磨:加温固化后的工件严格按照工件的尺寸进行研磨处理,密封相配面应试配合格。
5、喷漆:经检验合格后,对工件进行喷漆,要求喷漆表面均匀,不允许有流挂现象。
扩展资料:
汽蚀的原因
泵在吸入真空度大于允许吸入真空度时,发生汽蚀现象。主要发生在叶轮外缘叶片及盖板,涡壳或导轮处,不会发生在叶片进口处。
例如流量大于设计流量时发生在叶片进口靠近前盖板的叶片正面处(K1)。当叶轮入口处压强下降至被送液体在工作温度下的饱和蒸汽压时,液体将会发生部分汽化,生成的气泡将随液体从低压区进入高压区,在高压区气泡会急剧收缩。
凝结,其周围的液体以极高的速度冲向原气泡所占空间,产生高强度的冲击波,冲击叶轮和泵壳,发生噪音引起震动。由于长期受到冲击力反复作用以及液体中微量溶解氧的化学腐蚀作用,叶轮局部表面出现斑痕和裂纹甚至成海绵状损坏。
1、结构措施:采用双吸叶轮,以减小经过叶轮的流速,从而减小泵的汽蚀余量;在大型高扬程泵前装设增压前置泵,以提高进液压力;当气体到达高压区时,蒸汽凝结,气泡破裂,气泡的消失导致产生局部真空,液体质点快速冲向气泡中心,质点相互碰撞,产生很高的局部压力。
2、提高液体的密度。
输送密度越大的液体时泵的吸上高度就越小,当用已安装好的输送密度较小液体的泵改送密度较大的液体时,泵就可能产生汽蚀,但用输送密度较大液体的泵改送密度较小的液体时,泵的入口压力较高,不会产生汽蚀。
3、升高输送液体的温度。
当离心泵的进口压力小于环境温度下的液体的饱和蒸气压时,液体中有大量蒸汽逸出,并与气体混合形成许多小气泡;在泵的入口压力不变的情况下,输送液体的温度升高时,液体的饱和蒸气压可能升高至等于或高于泵的入口压力,泵就会产生汽蚀。
影响汽蚀现象产生的因素
汽蚀现象产生的本质原因是入口压力小于流体输送温度下的饱和蒸汽压。汽蚀现象主要发生在叶轮外缘叶片及盖板,涡壳或导轮处,不会发生在叶片进口处,例如流量大于设计流量时发生在叶片进口靠近前盖板的叶片正面处。
当叶轮入口处压强下降至被送液体在工作温度下的饱和蒸汽压时,液体将会发生部分汽化,生成的气泡将随液体从低压区进入高压区,在高压区气泡会急剧收缩、凝结,其周围的液体以极高的速度冲向原气泡所占空间,产生高强度的冲击波,冲击叶轮和泵壳,发生噪音引起震动。
解决办法:
(1)改进离心泵的吸入口至叶轮附近的结构设计。增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提前接受作功,提高压力。
(2)采用前置诱导轮,使液流在前置诱导轮中提前作功,以提高液流压力。
(3)采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。
(4)设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处的弯曲,减小叶片阻塞,以增大进口面积;改善大流量下的工作条件,以减少流动损失。但正冲角不宜过大,否则影响效率。
(5)采用抗气蚀的材料。实践表明,材料的强度、硬度、韧性越高,化学稳定性越好,抗气蚀的性能越强。
提高进液装置有效气蚀余量的措施:
(1)增加离心泵前贮液罐中液面的压力,以提高有效气蚀余量。
(2)减小吸上装置泵的安装高度。
(3)将上吸装置改为倒灌装置。
(4)减小离心泵前管路上的流动损失。如在要求范围尽量缩短管路,减小管路中的流速,减少弯管和阀门,尽量加大阀门开度等。
泵汽蚀如何解决的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于泵汽蚀的五种原因、泵汽蚀如何解决的信息别忘了在本站进行查找喔。